An Unusual Reaction of a Pyridinium Ylide with 1,1-Dicyanoethylene Derivatives

Shinji Yamada* and Emiko Ohta

Department of Chemistry, Faculty of Science, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610

(Received March 24, 2008; CL-080312; E-mail: yamada.shinji@ocha.ac.jp)

A reaction of pyridinium perfluorophenacylide generated from pyridinium salt 1 with 1,1-dicyanoethylene derivatives 2 produced unusual products 3, which have an ylide structure with a cyano group at the C2 and a *cis*-acrylonitrile moiety at the oposition of the perfluorophenyl group. A plausible mechanism involving intramolecular aromatic nucleophilic substitution and 1,3-migration of the cyano group is proposed for this reaction.

It has been reported that the reaction of a pyridinium ylide¹ with an electron-deficient olefin produces indolidine² or cyclopropane³ derivatives depending on the properties of the olefin and the pyridinium nucleus. When benzylidenemalononitrile is employed as an electrophile, cyclopropane is predominantly produced,³ whereas, the reaction with acrylonitrile gives indolidine derivatives (Scheme 1).²

We recently reported the first example of the enantioselective cyclopropanation of electron-deficient olefins with chiral pyridinium ylide derivatives.⁴ In addition, we found that when the phenacyl group was replaced with the perfluorophenacyl group, the ylide became significantly stable and could be isolated.⁵

In this letter, we describe that the reaction of the stable pyridinium perfluorophenacylide 4 generated from 1 with 1,1-dicyanoethylene derivatives 2 provided no expected cyclopropanes, but gave unexpected products 3.

The reaction of benzylidenemalononitrile (**2a**) and pyridinium salt **1** in the presence of Et₃N afforded an unusual product **3a**⁶ (Table 1). The structure of **3a** was determined by X-ray crystallographic analysis (Figure 1).⁷ It is remarkable that this product has a cyano group at the C2 and an acrylonitrile moiety at the o-position of the aromatic ring with Z configuration. Both substituents could originate from the benzylidenemalononitrile (**2a**). The planar geometry of C1 and C2, and the much shorter 1.391 Å C1–C2 bond length and the much longer 1.239 Å C=O bond length than the corresponding general case⁸ strongly suggest the ylide structure of **3**.

The reaction required about 24 h at rt for completion; a

Scheme 1. Two general reaction modes of a pyridinium ylide with electron-deficient olefins.

 Table 1. Reaction of alkene 2 with a pyridinium ylide generated from 1

Br ⁻	$ \begin{array}{ccc} $	$\begin{array}{c} R & CN \\ CN \\ 2a: R = Ph \\ 2b: R = Py \\ 2c: R = C_8H_{11} \\ 2d: R = Et \end{array}$	Et ₃ N CH ₂ Cl ₂	$ \begin{array}{c} F \\ F \\ F \\ Ga-3d \end{array} $
Entry	Alkene (equiv)	Temp/°C	Time/h	Yield of 3/% ^a
1	2a (1)	rt	24	53
2	2a (1)	rt	3.5	15
3	2a (1)	-40	24	n.r.
4	2a (2)	rt	16	70
5	2a (2)	rt	24	79

rt

rt

rt

18

24

24

67

68

7^b

25^b

9	2d (2)	rt	24	
9 . 1.	1 . 1 1 han			

^aIsolated yield. ^bThe rest is a complex mixture.

2a(3)

2b(2)

2c(2)

6

7

8

Figure 1. X-ray structure of 3a.

shorter reaction time resulted in a significantly lower yield with recovery of the ylide **4**, and no reaction proceeded at -40 °C (Entries 2 and 3). The highest yield was obtained when two equiv of the alkene was used at rt (Entry 5). The nucleophilic addition to **2b** also gave a similar result (Entry 7). For the reactions using alkyl-substituted olefins, **2c** and **2d**, similar products were obtained despite the lower yields (Entries 8 and 9). All products are obtained as a single stereoisomer about the olefinic moiety.

Scheme 2 outlines a plausible pathway for the formation of product **3**. The nucleophilic addition of the ylide **4** to the alkene **2a** produces the intermediary betaine **A**. While a betaine with a

Scheme 2. Plausible reaction pathway for the formation of 3.

phenyl group (R = H) preferentially attacks the C2 to produce cyclopropane **5** as reported in the literature,³ betaine **A** possessing a perfluorophenyl group (R = F) undergoes an intramolecular aromatic nucleophilic substitution to give the intermediary bicyclic product **B**. The deprotonation of the C2-proton would produce the second ylide **C**. The anion-mediated cyano group migration through a four-membered intermediate affords betaine **D**. The Grob-type fragmentation⁹ of **D** results in the product ylide **3a**, the Z configuration of which would be a result of the fragmentation controlled by the overlap between the σ^* orbital of the C2–C3 bond and the sp³ orbital of the carbanion. The driving force of this rearrangement would be the formation of ylide **3a** stabilized with a cyano group at C2.¹⁰ A similar 1,3-cyano migration has been reported for the radical-mediated reactions via the four-membered iminyl radical intermediate.¹¹

When methyl acrylate was used as an electrophile, the 1,3dipolar addition proceeded to give the tetrahydroindolidine and indolidine derivatives in 11 and 35% yields, respectively (Scheme 3). The structure of the indolidine **6** was confirmed by X-ray structural analysis.¹² It should be noted that no product related to **3** was obtained in this reaction.

In summary, we found a new type of reaction with pyridini-

1 +
$$CO_2Me$$
 Et_3N CO_2Me CO_2Me CO_2Me
5 11% CO_2F_5 CO_2F_5 CO_6F_5 COC_6F_5

Scheme 3. Reaction of 1 with methyl acrylate in the presence of Et_3N .

um ylide. The reaction of pyridinium perfluorophenacylide with 1,1-dicyanoethylene derivatives gave unusual adducts 3 via intramolecular aromatic nucleophilic substitution and 1,3-migration of a cyano group.

This work was partly supported by a Grant-in-Aid for Scientific Research (B) (no. 17350046) from the Japan Society for the Promotion of Science.

References and Notes

- For reviews, see: a) S. Wanda, *Heterocycles* 1996, 43, 2005.
 b) A. Kakehi, J. Synth. Org. Chem. Jpn. 2005, 63, 222.
- 2 a) Y. Tamura, N. Tsujimoto, Y. Sumida, M. Ikeda, *Tetrahedron* 1972, 28, 21. b) T. Sasaki, K. Kanematsu, A. Kakehi, G. Ito, *Tetrahedron* 1972, 28, 4947. c) O. Tsuge, S. Kanemasa, S. Takenaka, *Bull. Chem. Soc. Jpn.* 1985, 58, 3137. d) S. Kanemasa, S. Takenaka, H. Watanabe, O. Tsuge, *J. Org. Chem.* 1989, 54, 420. e) L. Zhang, F. Liang, L. Sun, Y. Hu, H. Hu, *Synthesis* 2000, 1733. f) K. Wu, Q.-Y. Chen, *Synthesis* 2003, 35. g) Z. Xia, T. Przewloka, K. Koya, M. Ono, S. Chen, L. Sun, *Tetrahedron Lett.* 2006, 47, 8817.
- 3 a) A. M. Shestopalov, Y. A. Sharanin, V. P. Litvinov, O. M. Nefedov, *Zh. Org. Khim.* 1989, 25, 1111. b) N. H. Vo, C. J. Eyermann, C. N. Hodge, *Tetrahedron Lett.* 1997, 38, 7951.
 c) S. Kojima, K. Fujitomo, Y. Shinohara, M. Shimizu, K. Ohkata, *Tetrahedron Lett.* 2000, 41, 9847.
- 4 S. Yamada, J. Yamamoto, E. Ohta, *Tetrahedron Lett.* **2007**, *48*, 855.
- 5 S. Yamada, E. Ohta, Acta Crystallogr., Sect. C 2008, 64, o230.
- 6 **3a**: yellow crystal; mp 175.8–176.5 °C; IR (KBr) 3094, 2213, 2187, 1572, 1467, 1389 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.29 (d, J = 5.86 Hz, 2H), 8.03 (t, J = 7.81 Hz, 1H), 7.87 (m, 2H), 7.79 (t, J = 7.32 Hz, 2H), 7.45 (m, 4H); MS m/z 421 (M⁺, 0.4%), 369 (89), 338 (100), 242 (24), 195 (41), 94 (32), 57 (26). ¹³C NMR (100 MHz, CDCl₃) δ 92.8, 99.4, 116.4, 117.8, 119.2, 124.4, 126.7, 128.7, 129.3, 131.1, 132.6, 139.0, 139.2, 140.0, 142.4, 143.3, 145.8. 150.9, 168.9.
- 7 Crystallographic data for **3a**: $C_{23}H_{11}F_4N_3O$, $M_r = 421.35$, monoclinic, $P2_1/a$, a = 14.3211(3), b = 7.08750(10), c = 18.2058(4) Å, $\beta = 94.6735(10)^\circ$, V = 1841.76(6) Å³, T = 298 K, Z = 4, $D_{calcd} = 1.519$ g cm⁻¹, A total of 27699 reflections were collected and 3356 are unique ($R_{int} = 0.057$). R_1 and wR_2 are 0.0630 [$I > 2\sigma(I)$] and 0.2225 (all data), respectively. CCDC 682165.
- 8 F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, R. Taylor, J. Chem. Soc., Perkin Trans. 2 1987, S1.
- 9 For a review, see: C. A. Grob, P. W. Schiess, Angew. Chem., Int. Ed. Engl. 1967, 6, 1.
- 10 The role of a cyano group on the stabilization of pyridinium ylides is established: a) Y. Karzazi, G. Surpateanu, C. N. Lungu, G. Vergoten, J. Mol. Struct. 1997, 406, 45. b) Y. Karzazi, G. Vergoten, G. Surpateanu, J. Mol. Struct. 1997, 435, 35.
- 11 A. Bury, P. Bougeard, S. J. Corker, M. D. Johnson, M. Perlmann, J. Chem. Soc., Perkin Trans. 2 1982, 1367.
- 12 Crystallographic data for **6**: $C_{17}H_8F_5NO_3$, $M_r = 369.25$, monoclinic, $P2_1/c$, a = 7.0294(5), b = 23.8012(17), c = 18.4727(13) Å, $\beta = 94.405(3)^\circ$, V = 3081.5(4) Å³, T = 298 K, Z = 8, $D_{calcd} = 1.592$ g cm⁻¹, A total of 45501 reflections were collected and 5399 are unique ($R_{int} = 0.107$). R_1 and wR_2 are 0.0736 [$I > 2\sigma(I)$] and 0.2311 (all data), respectively. CCDC 682166.